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The atomic volume of an AxByCz ternary intermetallic compound can be calculated starting from

volumes of some proper A–B, A–C and B–C binary phases. The three methods by Colinet, Muggianu and

Kohler, originally used to estimate thermodynamic quantities, and a new method here proposed, were

tested to derive volume data in eight systems containing 91 ternary phases with the known structure.

The comparison between experimental and calculated volume values shows the best agreement both

for the Kohler method and for the new proposed procedure.

& 2011 Elsevier Inc. All rights reserved.
1. Introduction

The possibility to estimate the atomic volume of an inter-
metallic compound can be useful for several reasons. The esti-
mated value can be a simple check to see if the structure and the
composition of a newly discovered phase are reasonable. The
volume can be previously estimated for not yet known phases, for
unstable phases, for phases which are synthesized with difficulty
in form of monophasic sample, owing to the complicated phase
diagram. In some cases, the high difference between observed and
estimated volumes may point out a particular bond situation,
different from a typical metallic arrangement with good space
filling: structures with directional features and low coordination
numbers, or layer structures.

The simplest way to obtain the phase volume value is based on
the proper combination of the elemental volumes [1]. However, it
is known that this approach provides only a rough approximation,
as strong deviations from the experimental value are often
observed, usually volume contractions (up to 28 %) [2].

A possible way to obtain a more precise volume estimate lies in
a procedure similar to that used to derive thermodynamic quan-
tities (like excess Gibbs energy) in polynary systems [3 and refer-
ences therein]. Following this approach, to our knowledge not yet
used for volume calculations, a property of a ternary phase can be
obtained combining the known contributions of binary phases.

The present work is devoted to apply this method to evaluate
the volume of ternary intermetallics on the basis of the structural
ll rights reserved.

ni).
data of binary phases. Since different methods have been pro-
posed in the literature for the choice of the binary phases, the
main goal will be to select the best procedure. This is possible
owing to the large number of known crystallographic data both of
binary and ternary compounds. In the second place, as the data
of the binary phases show the volume effects due to the binary
interactions, the comparison between the so estimated volumes
of the ternary phases and those observed gives an idea of the
additional weight of the ternary interactions.
2. Extrapolation methods

The problems to be solved preliminarily are:
(a)
 the choice of the suitable compositions of the binary phases;

(b)
 the calculation of the ‘‘observed’’ volume for the chosen composi-

tions, even when they do not correspond to existing phases; and

(c)
 the weighing system of the binary contributions.
For the first problem, four geometrical methods have been
suggested by Colinet, Muggianu, Kohler and Toop [3]. As can be
seen in Fig. 1, the first three methods are symmetrical, as they
treat contributions from the binary systems in the same way,
while Toop’s method should be applied when one element is
considered different from the others. A fifth method, proposed in
the present work, and based on a symmetric variant of the Toop
method (see Section 3.2), is also shown in the figure.

The second problem can be solved by fitting empirical equations
to the experimental average atomic volumes of the known
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Fig. 1. Methods of selecting compositions of the binary phases to extrapolate a physical property of a ternary phase.
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intermediate phases within each binary system, so it is possible to
calculate the atomic volume for any composition. This method can
give acceptable results only if the experimental points lie in a
regular way within the system, as it really happens in most binary
intermetallic systems. Two simple analytical expressions, already
used [2,4], are here selected to represent the compositional depen-
dence of the average atomic volume Vat within an A1�xBx system

Vat ¼ ð1�xÞV3

AþxV3

B�Kxnð1�xÞ ð1Þ
Vat ¼ ð1�xÞV3

AþxV3

B�Kxnð1�xÞ2 ð2Þ

where V3

A and V3

B are the elemental volumes [5], K and n are
adjustable parameters. As can be seen, the first two terms of both
equations refer to the linear Vegard-like trend, while the last term is
a measure of the observed deviations, usually volume contractions.
For a given A�B system, the maximum value of the volume
contraction is shown by the phase with the stoichiometry ABn

or ABn/2, using Eqs. (1) and (2), respectively [2,4].



Table 2
Fitting parameters values of the atomic volume vs. composition (Eqs. 1 and 2) for

the considered binary systems.

A–B system Number of phases Equation K n

Ca–Cu 3 (1) 15.32 1.34
Ca–Sn 7 (1) 18.97 0.68
Cu–Sn 7 See text
Eu–Cu 4 (1) 20.02 1.62
Eu–Sn 5 (1) 22.32 0.79
Yb–Cu 5 (1) 12.28 0.83
Yb–Sn 6 (1) 24.24 0.83
Nd–Cu 5 (1) 3.70 6a

Nd–Sn 7 (1) 24.69 3a

Gd–Ni 10 (2) 74.50 3.42
Gd–Al 10 (1) 5.68 1.29
Ni–Al 6 (2) 12.69 1.31
Ho–Ni 8 (2) 74.30 3.57
Ho–Ga 10 (1) 27.35 2.44
Ni–Ga 7 (1) 16.34 1.57
Y–Ni 9 (1) 11.24 1.55
Y–Si 5 (1) 45.08 2.11
Ni–Si 6 (1) 18.05 1.31
Er–Ni 10 (1) 10.71 1.85
Er–Ge 10 (1) 29.53 1.63
Ni–Ge 6 (1) 13.23 1.02

Fig. 2. Average atomic volumes Vat of elements and of binary and ternary phases

occurring in the eight considered systems, calculated by means of the paraboloid

Eq. (3), versus the observed volume values. The solid line represents the equality

conditions between experimental and calculated values.
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The third problem can be solved by applying the lever rule
to the binary contributions. In particular, for a given ternary
compound, each binary phase gives a contribution which is
proportional to its reciprocal distance from the ternary point.
For example, following Muggianu’s method, for the ternary phase
AxByCz, the weight of the volume of the binary phase Bx +2yCx +2z is
given by the ratio (1/x)/(1/x+1/y+1/z), where x, y, z are the
distances of the three binary phases from the ternary one
(Fig. 1). The stoichiometries of the binary compositions necessary
to calculate the atomic volume of a ternary compound are listed
in Table 1 for the different applied methods.

A further question is the choice of some ternary A–B–C systems
as check points to judge the reliability of the method. The selected
conditions in the present work are: the occurrence of many inter-
mediate phases both in binary and in ternary systems, and the
availability of structural data for all compounds, if possible. The
search in the databases for intermetallic compounds [6,7] shows
that such conditions are often found when A is a 2 or 3 group
element (alkaline earth or rare earth), B is a transition metal, C is a
post-transition element, mostly belonging to the 13 and 14 groups.

The selected cases are three recently studied systems, namely Ca–
Cu–Sn [8] (6 ternary phases with known crystal structure), Yb–Cu–
Sn [9–12] (12 ternary phases), Eu–Cu–Sn [13–15] (6 ternary phases),
and the following systems: Nd–Cu–Sn (9 ternary phases), Gd–Ni–Al
(12 ternary phases), Ho–Ni–Ga (23 ternary phases), Y–Ni–Si (12
ternary phases) and Er–Ni–Ge (11 ternary phases) [6,7].

The distribution of the points of the ternary phases within the
corresponding composition–volume plots was previously controlled,
in order to check the occurrence of a regular trend analogous to that
observed for the binary phases. Actually, a good geometrical regular-
ity can be seen in the eight three dimensional plots, and this was
quantitatively confirmed by fitting a simple quadratic equation to all
volume data of each ternary system, namely volumes of the three
elements, of the binary phases and of the ternary phases. By imposing
the constraints that the paraboloid surface meets the three points of
the elements, the following equation was used

V¼VBþaXþbYþðVC�VB�aÞX2
þ4=3ðVA�0:75VB�0:25VCÞY

2

�1=3aY2
�2=O3bY2

ð3Þ

where VA, VB and VC are the volumes of the elements, a and b are
refinable parameters, X and Y are the cartesian coordinates of the
AxByCz phases. With respect to the triangular representation of the
ternary system, the origin of the Cartesian coordinates is placed
at the B corner, while the X axis coincides with the BC side. Fig. 2
reports, as a function of the observed values, the volumes calcu-
Table 1
Stoichiometries of the binary compositions selected in the five discussed methods

to calculate the atomic volume of a ternary phase AxByCz.

Method Binary compositions

Colinet

AxBy + z AxCy + z ByCx +z

Ax + zBy Ax +yCz Bx + yCz

Muggianu

A2x +zB2y +z A2x + yCy + 2z Bx + 2yCx +2z

Kohler

AxBy AxCz ByCz

Toop

AxBy + z AxCy + z ByCz

Present method

AxBy + z AxCy + z ByCz

Ax + zBy AxCz ByCx +z

AxBy Ax +yCz Bx + yCz

a Fixed value.
lated after Eq. (3) fitted by the least squares method to the eight
considered ternary systems, which contain a total of 273 elements,
binary and ternary compounds. As can be seen, this simple analytical
representation provides a reasonable agreement with the experimen-
tal data, with a 3.9% average deviation from the ideal equality line,
confirming the regular spatial distribution of the points of the ternary
compounds within each system.

3. Results

3.1. Volume calculation in the binary systems

Table 2 reports the fitting parameters of the atomic volume
versus composition for the 21 considered binary systems. Eq. (1) was
used in most cases, while the strong scatter of the experimental data
of the Cu1�xSnx phases suggested a simple quadratic dependence

Vat ¼ 11:81þ13:6xþ1:64x2
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Moreover in order to avoid unphysical trends, the point corre-
sponding to the maximum volume contraction must lie within
the composition range of the existing phases. So, in the Nd–Cu
and Nd–Sn systems the n value was fixed corresponding to the
maximum copper and tin content.
Fig. 3. Average atomic volumes vs. compositions in the binary systems Ho–Ni, Nd–Cu, G

trend; and dashed line: Vegard-like behavior.
Fig. 3 reports the analytical representation of Vat as a function
of composition for some binary systems, which correspond to the
different observed trends (Ho–Ni, Nd–Cu, Gd–Al, Nd–Sn, Yb–Sn
and Ni–Si). As can be seen, the points of the intermediate phases
follow a regular trend and show small deviations from the
d–Al, Nd–Sn, Yb–Sn, Ni–Si. Full circles: experimental points; solid line: calculated
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calculated curves. So, it is possible to calculate the atomic volume
for any composition with an acceptable reliability.
3.2. Volume calculation of the ternary phases

The extrapolation methods by Colinet, Muggianu and Kohler
were employed to calculate the average atomic volume V(AxByCz)
of the AxByCz ternary phase, with x+y+z¼1. The corresponding
formulae are:
Tab
Obs

All

P

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

Colinet-like

VðAxByCzÞ ¼w1½VðBxþyCzÞþVðByCxþ zÞ�

þw2½VðAxþyCzÞþVðAxCyþ zÞ�

þw3½VðAxByþ zÞþVðAxþ zByÞ�

w1¼[2x(1/x+1/y+1/z)]�1

w2¼[2y(1/x+1/y+1/z)]�1

w3¼[2z(1/x+1/y+1/z)]�1

Muggianu-like

VðAxByCzÞ ¼w1VðBxþ2yCxþ2zÞþw2VðA2xþyCyþ2zÞ

þw3VðA2xþ zB2yþ zÞ

w1¼[x(1/x+1/y+1/z)]�1

w2¼[y(1/x+1/y+1/z)]�1

w3¼[z(1/x+1/y+1/z)]�1

Kohler-like

VðAxByCzÞ ¼ ½w1=Swi�VðAxByÞþ½w2=Swi�VðByCzÞ

þ½w3=Swi�VðAxCzÞ

w1¼[3z2/4+(y+z/2–y/(1�z))2]�1/2

w2¼[3x2/4+(y+x/2–y/(1�x))2]�1/2

w3¼[3y2/4+(z+y/2–z/(1�y))2]�1/2
where V(Bx +yCz) and the like are the volumes of the corresponding
binary compositions and wi are the weigths.

A new procedure is also proposed, which can be considered
as a modified and symmetric variant of Toop’s method. Referring
le 3
erved and calculated volumes for the ternary phases in the Ho–Ni–Ga system.

values are in Å3/at.

hase Vobserved VVegard VColinet VMuggianu VKohler Vpresent formula

o5Ni0.4Ga2.6 24.91 26.37 25.12 25.05 25.74 24.91

o6Ni2Ga1 24.04 25.37 24.76 24.71 25.38 24.65

o6Ni2Ga2 23.25 24.79 23.83 23.75 24.58 23.54

o6Ni2.3Ga1.7 22.67 24.53 23.61 23.54 24.32 23.36

oNi0.3Ga1.7 19.77 22.57 19.87 19.73 20.44 19.06

oNi0.4Ga1.6 18.72 22.28 19.71 19.54 20.20 18.78

oNi0.5Ga1.5 19.05 21.99 19.54 19.34 19.88 18.53

o4NiGa12 18.13 21.79 18.86 18.76 19.34 18.18

o3Ni1.8Ga9.2 17.67 20.95 18.26 18.04 18.51 17.16

oNi0.9Ga1.1 18.04 20.84 18.76 18.48 18.55 17.70

o2Ni2Ga 18.36 20.75 19.07 18.95 19.22 18.46

oNiGa 17.75 20.55 18.54 18.27 18.27 17.53

oNiGa2 16.93 20.31 17.86 17.52 17.45 16.58

oNiGa4 16.76 20.07 17.50 17.23 17.41 16.29

o4Ni10Ga21 15.08 18.43 15.89 15.53 15.17 14.72

o2Ni6Ga2 15.75 18.02 16.24 16.07 15.94 15.55

o2Ni5Ga5 15.09 17.91 15.65 15.22 14.54 14.45

oNi2.5Ga2.5 15.20 17.91 15.65 15.22 14.54 14.45

o2Ni7.5Ga9.5 14.24 17.39 14.93 14.54 13.99 13.88

oNi2.9Ga2.1 14.88 17.33 15.26 14.87 14.19 14.19

oNi3Ga2 14.85 17.19 15.17 14.79 14.12 14.14

o2Ni9.4Ga7.6 13.78 16.52 14.33 13.96 13.34 13.42

o2Ni7Ga3 14.44 16.47 14.72 14.43 13.91 13.92
to symbols used in Fig. 1 (Toop’s method), the simple linear
contribution of the AxBy +z and AxCy +z binary compositions is
lowered by a quantity equal to the volume contraction of the
ByCz composition, namely the difference (VVegard�Vobserved). This
negative contribution is weighed by the expression (y+z)2, a
parabolic dependence on the distance between the ternary point
and the B–C side. This procedure is extended to all three sides of
the system and the results averaged. The resulting expression is:

Present work

VðAxByCzÞ ¼ 1=3f½x=ðxþyÞ�VðAxþyCzÞþ½y=ðxþyÞ�VðBxþyCzÞ

�ðxþyÞ2½V0ðAxByÞ-VðAxByÞ�g

þ1=3f½y=ðyþzÞ�VðAxByþ zÞþ½z=ðyþzÞ�VðAxCyþ zÞ

�ðyþzÞ2½V0ðByCzÞ-VðByCzÞ�g

þ1=3f½x=ðxþzÞ�VðAxþ zByÞþ½z=ðxþzÞ�VðByCxþ zÞ

�ðxþzÞ2½V0ðAxCzÞ-VðAxCzÞ�g

where V0(ByCz) and the like correspond to the ideal Vegard-like
values.

As an example, the observed volumes and those calculated
on the basis of the Vegard rule and of the above formulae are
reported in Table 3 for the Ho–Ni–Ga system, which contains
the highest number of ternary intermediate phases. For a better
comparison, the percentage deviation of the five empirical previ-
sions from the experimental data are also plotted (Fig. 4a). Finally,
an overall graph is given in Fig. 4b, showing results of the 91
ternary compounds occurring in the eight studied systems.
Fig. 4. Percent deviation from the experimental data of the volumes calculated

after Vegard, Colinet, Muggianu, Kohler methods and present formula for the

Ho–Ni–Ga system (a), and for the eight examined ternary systems (b).
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4. Discussion

The obtained results allow to make the following comments:
(a)
 As expected Vegard’s criterion provides too high volume
values, but it shows the volume effects occurring in the phase
formation (ranging from 2 % to 28 % of volume contraction,
with the maximum values for the Si and Ge systems).
(b)
 Colinet- and Muggianu-like methods give similar results,
usually higher than the experimental data.
(c)
 The Kohler-like method and the here proposed formula show
an acceptable agreement between observed and calculated
values.
(d)
 Since a good agreement can be obtained starting from a
proper choice of the binary phases that means the minor role
played by the additional ternary interactions.
In conclusion, the best estimate of the atomic volume of any
ternary intermetallic compound can be obtained from the crystal-
lographic data of the corresponding binary systems, applying both
the Kohler method and the new procedure here proposed.

Moreover, according to the (d) observation, the volume effects
occurring in the formation of a ternary phase can be mostly
imputed to the process of formation of the binary compounds.
This is in agreement with the principle that, going to systems
of higher order, the additional interactions are less and less
important.
Finally, the present results can be taken into account as a
general check of the cited methods, not only for the here
discussed volume calculations, but also for the validity of the
predictions of thermodynamic quantities.
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